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Near  infrared  hyperspectral  imaging  (NIR-HSI)  allows  spatially  resolved  spectral  information  to  be  col-
lected  without  sample  destruction.  Although  NIR-HSI  is  suitable  for a  broad  range  of samples,  sizes and
shapes,  topography  of  a sample  affects  the  quality  of near  infrared  (NIR)  measurements.  Single  whole
kernels  of three  cereals  (barley,  wheat  and  sorghum),  with  varying  topographic  complexity,  were  exam-
ined  using  NIR-HSI.  The  influence  of topography  (sample  shape  and  texture)  on spectral  variation  was
examined  using  principal  component  analysis  (PCA)  and  classification  gradients.  The  greatest  source  of
variation  for  all  three  grain  types,  despite  spectral  preprocessing  with  standard  normal  variate  (SNV)
lassification gradients
rincipal  component analysis
orghum
opography
heat

transformation,  was  kernel  curvature.  Only  1.29%  (PC5),  0.59%  (PC6)  and  1.36%  (PC5)  of  the  spectral  vari-
ation  within  the  respective  barley,  wheat  and  sorghum  image  datasets  was  explained  within  the  principal
component  (PC)  associated  with  the  chemical  change  of  interest  (loss  of  kernel  viability).  The  prior  PCs
explained  an  accumulated  total  of  91.18%,  89.43%  and  84.39%  of  spectral  variance,  and  all  were  influenced
by  kernel  topography.  Variation  in sample  shape  and  texture  relative  to the  chemical  change  of interest
is  an  important  consideration  prior  to  the  analysis  of  NIR-HSI  data  for  non-flat  objects.
. Introduction

Near infrared (NIR) spectroscopy has been used throughout
he food industry for decades [1]. The recent adaptation of NIR
pectroscopy for imaging purposes (near infrared hyperspectral
maging (NIR-HSI) or near infrared chemical mapping) allows spa-
ially resolved spectral information to be collected [2]. NIR-HSI
etains the advantages of NIR spectroscopy, namely no sample
reparation or destruction, and the ability to examine several con-
tituents simultaneously. In addition, NIR-HSI is able to identify
nd locate chemically or physically similar regions within a sam-
le. As a combination of imaging and NIR spectroscopy, NIR-HSI is
ubject to error arising from both techniques [3–5]. Consequently,
opography (sample shape and texture) of the sample affects the
ollected NIR spectra [2,6]. The influence of topography on hyper-
pectral imaging data was previously shown in a study of bruised
ushrooms [5]. Path length differences and non-uniform lighting,

aused by sample curvature, resulted in higher reflectance inten-

ities recorded from sampling points closest to the detector. The
nfluence of topography was subsequently minimised by apply-
ng preprocessing methods to spectral datasets [6]. Mushroom
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topographic effects were explained by the first principal compo-
nent (PC1) of a principal component analysis (PCA) applied to raw
data [5]. The application of mean normalisation to the spectral
dataset effectively removed the influence of mushroom curvature
[5]. Many agricultural samples have more complex topographies
than mushrooms and shape/surface roughness effects may  not be
so easily diminished or described. It was shown that despite pre-
processing (multiplicative scatter correction or standard normal
variate combined with Savitzky-Golay smoothing), sample curva-
ture dominated PC1 of a wheat image dataset when diffusion of
conditioning water was investigated [7].

When using a pushbroom imaging system (line scanner), an
attempt is made to create a rectangle of illumination that is homo-
geneous along its length. The intensity across the width of the
illumination rectangle may  vary because the camera only detects
the central region. This works well with flat or semi-flat surfaces;
with round objects a number of irregularities are created: (1) the
maximum intensity and size of the rectangle of illumination is
dependent on the height above the background on which the sam-
ples are placed; (2) there will be shades on the vertical sides of
the objects; and (3) the reflection geometry will be different across
the objects because of curvature. These effects are repeated on a
miniature scale if there is a surface roughness, hairiness or porosity.
The detection of kernel viability was assessed in an earlier study
[8]. In this study it was observed that chemical variation relating to
viability was  only explained in the lowest variance PCs; barley and
sorghum viability was explained in PC5 and wheat viability in PC6.



2 lanta 

T
P
t
p
P
N
p
o
o
c
a
o

2

2

e
v
–
A
c
S
P
c
s
i
n
T
s
n
a
o
q
6
s
f
A
i
n
z
a
G
p
e
a
l
u

2

2

S
t
a
H
(
s
w
o
s
t
i

24 M.  Manley et al. / Ta

he sources of spectral variation explained in the higher variance
Cs were investigated in this study. PC1 calculated from conven-
ional NIR spectra normally explains physical variation, e.g. due to
article size differences. It is thus likely that these higher variance
Cs also explain variation due to physical differences. In the case of
IR imaging these differences are probably due to variation in sam-
le height, shape or surface texture. An investigation into the effect
f grain topography on the observation of a more subtle (in terms
f NIR) chemical process, i.e. grain viability, is presented; specifi-
ally, the effect of barley, wheat and sorghum topography on PCA
pplied to image datasets recorded from grains exposed to 0–24 h
f incubation (germination).

.  Materials and methods

.1.  Samples and sample preparation

This study was carried out in conjunction with a study which
xamined the efficacy of NIR-HSI for the identification of non-
iable barley, wheat and sorghum kernels [8,9]. The wheat (cultivar

 Duzi), barley (cultivar – Puma) and sorghum (cultivar – South
frican landrace 4442) samples were kindly provided by the Agri-
ultural Research Council – Small Grain Institute (Stellenbosch,
outh Africa), SAB Maltings (Pty) Ltd (Caledon, South Africa) and
ANNAR (Pty) Ltd (Greytown, South Africa) respectively. From each
ereal, six subsets of 25 kernels were randomly selected. Five sub-
ets from each of the barley, wheat and sorghum samples were
ndividually placed in petri-dishes lined with 2 layers of Whatman
o.1 filter paper (Kimix Chemical and Laboratory Supplies, Cape
own, South Africa), and 3 mL  of distilled water was added. A single
ubset from each of the cultivars was incubated (to initiate germi-
ation) at 19 ◦C for each of the following time periods: 6, 9, 12, 18
nd 24 h. One subset from each cultivar was not treated with water
r incubated and kept as a control (0 h). All samples were subse-
uently frozen at −80 ◦C for 24 h and freeze dried (Virtis, Benchtop
.6, The Virtis Company, Gardiner, USA) for 72 h. All freeze dried
amples were vacuum sealed and stored at ambient temperature
or not more than three weeks until NIR-HSI data was collected.
fter collection of imaging data each kernel was analysed for viabil-

ty, i.e. whether germination has commenced (non-viable kernel) or
ot (viable kernel) [8]. Kernel viability was assessed using the tetra-
olium test. Barley kernels were cut longitudinally and soaked in

 1% (w/v) 2,3,5-triphenyl-tetrazolium chloride (Merck (Pty) Ltd,
ermiston, South Africa) solution at 40 ◦C for 30 min; the same
rocedure was followed for wheat and sorghum kernels, how-
ver, a 0.5% (w/v) 2,3,5-triphenyl-tetrazolium chloride solution
nd 60 min  was used. In fully viable kernels the embryo, scutel-
um and aleurone layer were stained bright pink-red but remained
nstained in non-viable kernels.

.2. Near infrared hyperspectral imaging

.2.1. Data collection
Near  infrared hyperspectral images were acquired using a

isuCHEMA short wave infrared (SWIR) hyperspectral imaging sys-
em (Specim, Spectral Imaging Ltd, Oulu, Finland), consisting of

 prism–grating–prism spectrograph coupled with a 2-D array
gCdTe detector. The SisuCHEMA system comprises a pushbroom

line scan) imaging configuration controlled by the ChemaDAQ
oftware. An integration time of 2.7 ms  per line was  used. A lens
ith a 50 mm wide field-of-view was used and a maximum length
f 100 mm was imaged. Each spectrum (i.e. pixel) collected repre-
ented a 150 �m × 150 �m area. Spectra were acquired from 1000
o 2498 nm with 6.3 nm intervals, resulting in images with the max-
mum dimensions of 320 (x) × 583 (y) × 239 (�). Internal dark and
89 (2012) 223– 230

external  white reference standards were used for image calibra-
tion. The raw image was corrected automatically in Evince version
2.4.0 (Umbio AB, Umeå, Sweden). The images were corrected and
transformed to pseudo-absorbance from instrument measurement
counts (A/D converter counts) by subtracting the dark reference
image from the raw images and dividing this sum by the total
reflectance spectrum of the dark reference image subtracted from
a white reference image:

I�,n = − log

[(
S�,n − B�,n

W�,n − B�,n

)
× 0.50

]

where n = pixel index variable (n = 1, . . .,  N); I�,n = standardised
absorbance intensity at pixel n at wavelength �; S�,n = sample image
intensity at pixel n at wavelength �; B�,n = dark reference image
intensity at pixel n at wavelength �; W�,n = dark reference image
intensity at pixel n at wavelength �; 0.50 = total reflectance of the
standard used.

The  hyperspectral imaging data for each cereal was collected
in a single image. From each subset 10 kernels (12 in the case
of sorghum) were randomly selected to be imaged. These 60 ker-
nels (72 in the case of sorghum) were arranged into 12 rows and
five (or six) columns; the kernels from each subset were grouped
together over two rows, however, the order of the subset rows
was randomised with respect to incubation time. Kernels were
positioned germ up on the silicon carbide sandpaper lined sam-
ple stage. The dorsal or rounded sides were thus imaged with
the ventral or creased side on the sandpaper. The kernels were
positioned such that the germ of all the grains pointed in the
same direction; in this case to the right (to the left on the NIR
images).

2.2.2. Data analysis
Evince  version 2.4.0 was  used for all data processing and analysis

of hyperspectral image data. The images of each grain were divided
into smaller images representing subsets based on incubation time.
These were subsequently arranged using the mosaic technique in
chronological order for ease of interpretation, before data analysis
commenced. The image of each grain type was analysed individu-
ally, e.g. all 60 kernels of the barley image were analysed together.
Principal component analysis was applied to mean-centered data to
identify and classify unwanted pixels, e.g. outliers, silicon carbide
background, dead pixels, shading errors and edge effects, as out-
lined in Williams et al. [10]. The unwanted pixels were removed
from the dataset. Standard normal variate (SNV) transformation
followed by mean-centering was  applied to the remaining data
and PCA was  applied to the SNV transformed data [8]. Alterna-
tively, multiplicative scatter correction (MSC), first derivative (1D)
and second derivative (2D) preprocessing were also evaluated.
Exploratory analysis of the score plots and images utilised the inter-
active feature of Evince, i.e. when a region was  selected in the score
plot the same pixels were highlighted in the score image and vice
versa; this is often referred to as brushing [11].

To identify the underlying source of variation explained in each
PC, classification gradients were used. Classification gradients were
defined individually for each PC. To define the classification gradi-
ents the scores range for a specific PC was divided into between
four and six successive groups. Hence, the first group consisted of
pixels with the most negative score values for the specific PC and
the last group consisted of pixels with the most positive score val-

ues. Each of these groups was  assigned a distinct colour in the score
plot which was subsequently projected onto the score image to cre-
ate a classification image. These classification images allowed the
influence of grain topography on PCA results to be identified.
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Fig. 1. Barley (left), wheat (centre) and sorghum (right) grains have significantly
different  topographies. The grains are positioned with the germ showing upwards
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nd  to the left of the digital image. Scale bar is 5 mm.  This digital image was taken
sing  a Nikon D90 with a Sigma 70 mm F2.8 EX DG macro lens.

. Results and discussion

Kernel  topography and surface roughness influence a NIR
eflectance image by altering reflection and scattering. Classifica-
ion gradients were defined in score plots and projected onto the
espective score images to allow visual assessment of topograph-
cal effects contributing to the spectral variation explained within
ach PC. Only the results obtained using SNV preprocessing are pre-
ented; substitution of SNV with MSC, 1D or 2D preprocessing lead
o similar conclusions. Barley, wheat and sorghum kernels have
ignificantly different topographies (Fig. 1). Sorghum is a smooth
urfaced nearly spherical grain; wheat is a fairly cylindrical grain

ith a textured surface and prominent indentation around the

mbryo; and barley, the largest of the three grains is ovoid with
n intermediately textured hull.

ig. 2. Barley classification gradient images and PC score plots of the first five principal 

ontribution of kernel topography to the PC could be assessed. The colours shown in the
bove. (For interpretation of the references to colour in this figure legend, the reader is re
89 (2012) 223– 230 225

3.1.  Barley

Within the dataset of the barley kernel image, a distinct dif-
ference between viable and non-viable kernels was  not clearly
observed until PC5 (Fig. 2) [8]. The greatest source of spectral vari-
ation, explained in PC1, was  attributed to kernel curvature. This
could clearly be seen when classification gradients were made in
the direction of PC1 from negative to positive scores. Negative PC1
scores (red and dark blue in Fig. 2) were associated with the higher
rounded or dorsal part of the barley kernels which would have been
closest to the light source and detector. Positive PC1 scores (green
and orange) were associated with the lower awn (germ side) and
basal ends which would have been furthest from the light source
and detector. The absence of strong peaks in the loading line plot of
PC1 (Fig. 3) indicated this PC1 was primarily describing scattering
effects due to kernel shape and the textured hull rather than chem-
ical composition. This is further emphasised by an examination of
the SNV preprocessed average spectra of the groups defined along
PC1 (Fig. 4). A baseline shift was observed from the most negative
to the most positive group along PC1; a baseline shift is generally
associated with scattering effects.

The negative and positive score extremes of PC2 (red and green
respectively in Fig. 2) were largely associated with the kernel edges.
This could have been due to some remaining shading effects not
removed during sample cleaning. PC2 scores around zero were
associated with the higher dorsal part of the kernel with distinc-
tion noticeable between the starchy endosperm having positive
scores (light blue) and the embryo with negative scores (dark blue).
The loading line plot of PC2 contained a series of prominent peaks
attributed to starch, protein and water (Fig. 3) [12]. PC2 explains the
variation due to proximate grain composition, thus the presence of
and variation in starchy endosperm, protein and moisture.

In  PC3 the most negative score values (red in Fig. 2) were asso-
scores (dark blue) were associated with the embryo region of the
dorsal part of the kernel and the less extreme positive PC3 scores
(light blue) with the starchy endosperm. The most positive scores

components (PCs). By defining a classification gradient within the score plots, the
 score plots correspond to the colours in the classification gradient image directly
ferred to the web version of the article.)
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Fig. 3. Principal component analysis loading line plots of the barley image dataset. (a) The absence of prominent peaks in the loading line plots of principal component one
(PC1)  indicated this PC was primarily due to scattering effects. (b) Strong peaks in PC2 loadings were indicative of chemical differences involving starch, protein and water. (c)
The  loadings of PC3 were attributed to scattering and physical effects. (d) The strong peaks of PC4 were indicative of the differences between viable and non-viable kernels.

Fig. 4. The SNV preprocessed average spectra for the groups defined using PC1 (a), PC2 (b), PC3 (c), PC4 (d) and PC5 (e). The spectrum colour corresponds to the group colour
in  Fig. 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)
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Fig. 5. Classification gradient images of sorghum kernels for PC1–PC5. The selection of the classification gradients in the direction of each PC are shown in the PC score plots.
The  colours shown in the score plots correspond to the colours in the classification gradient image directly above. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the article.)

Fig. 6. Principal component analysis loading line plots of the sorghum image dataset. (a) The absence of prominent peaks in the loading line plots of principal component one
( C2 lo
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PC1)  indicated this PC was primarily due to scattering effects. (b) Strong peaks in P
c)  The loadings of PC3 were attributed to scattering and physical effects. (d) PC4 c
f the differences between viable and non-viable kernels.

f PC3 (green) were largely associated with the lower basal end of
he kernel. The topographic influence within PC3 was apparent in
he loading line plot which contained no prominent peaks (Fig. 3).

In PC4 the first evidence of a difference between viable and non-

iable kernels was observed (Fig. 2); however, the lowest regions
awn that is close to the germ and furthest away from the light
ource and detector) of the kernel were still associated with the
ost negative scores (red). The subsequent classification gradients
adings were indicative of chemical differences involving starch, protein and water.
erised both physical and chemical effects; the strong peaks of PC4 were indicative

referred  to the embryo (dark blue) and starchy endosperm (light
blue and green) regions of the kernel. The light blue and green
coloured regions in the score image begin to indicate the difference
between viable and non-viable kernels. The starchy endosperm of

the non-viable kernels is indicated as light blue and that of the
viable kernels as green. This chemical variation explained in PC4
was also apparent in the loading line plot as peaks associated with
starch, fat and protein were heavily weighted (Fig. 3) [12]. In PC5 the
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Fig. 7. Classification gradient images of wheat kernels for PC1–PC6. The selection of the classification gradients in the direction of each PC are shown in the PC score plots.
The colours shown in the score plots correspond to the colours in the classification gradient image directly above. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web  version of the article.)

Fig. 8. Principal component analysis loading line plots of the wheat image dataset. (a) The absence of prominent peaks in the loading line plots of principal component one
(PC1)  indicated this PC was primarily due to scattering effects. (b) Strong peaks in PC2 loadings were indicative of chemical differences involving starch, protein and water.
PC3  (c), PC3 (d) PC4 and (e) PC5 contained both physical and chemical effects, the ratio of which decreased from PC3 to PC5.
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istinction between viable and non-viable kernels was clear with
reen indicating viable kernels. The indication of viability is proba-
ly possible due to release of enzymes and break down of starches.
he differentiation of viability observed in PC5 is explained in more
etail in McGoverin et al. [8].

Examination of the average SNV corrected spectra for each of the
roups defined along PC1–PC5 (Fig. 4) clearly indicated a reduction
n baseline differences between the groups from PC1 to PC5. Base-
ine differences are associated with physical effects. When PC1 was
sed to define the classification gradient, the groups were primar-

ly separated on the basis of topography, hence the average spectra
f each PC1 group exhibited the largest baseline differences. Each
uccessive PC exhibited less baseline differences. In conventional
IR spectroscopy PC1 usually accounted for most of the physical
ifferences while in NIR imaging more PCs are required. The base-

ine differences between the respective groups decreased from PC1
o PC5 because chemical changes accounted for a greater propor-
ion of the variance explained by the lower variance PCs. Chemical
ifferences were apparent in the different peak intensities within
he average spectra.

The  variation explained by PC1 after PCA was  applied to the
mage data of barley kernels was primarily topographical. The vari-
tion explained by this PC could be attributed to physical and thus
cattering effects due to shape and surface roughness. The loading
ine plot and score image of PC3 also indicated that the variation
xplained by this PC was primarily due to scattering effects. The
ariation explained by PC2 was due to proximate compositional
ifferences within and between the kernels, while the variation
xplained by PC4 was, to some extent, due to the changes caused
y germination of the kernels.

.2.  Sorghum

The sorghum kernels were smaller than those of both barley and
heat, and the variability in the height of the rounded or dorsal

ide of the kernel was greater for sorghum than wheat and bar-
ey. This height variability was observed within PC1 (Fig. 5). PC1 of
he sorghum dataset was based on curvature; negative PC1 score
alues (red and dark blue in Fig. 5) were associated with the ker-
el edges and positive PC1 score values (light blue and green) with
he more flat or dorsal part of the kernel. The effect of the kernel
dges not being consistent could be due to some shading effects still
eing present. The extremes of PC2 (red and orange) were assigned
o the edges (possible shading) of sorghum grain and the moder-
te PC2 score values (light blue and green) to the higher dorsal
arts of sorghum. In PC3 positive score values (green and orange)
ere assigned to the embryo end and negative score values (red

nd dark blue) to the starchy endosperm, referring to the proxi-
ate composition of the grain. The loading line plots of PC1–PC3

f sorghum were similar to those of the barley image dataset. The
core image of PC4 was the first indication a viable/non-viable ker-
el distinction could be derived from the NIR-HSI data, however,
his distinction was clearer in PC5 where negative scores (red and
ark blue) were assigned to viable kernels and positive scores (light
lue and green) to non-viable kernels. The breakdown of starch due
o the onset of germination was most likely the cause for this clear
istinction between the viable and non-viable kernels. PC4 was
omplicated by an association of negative scores (red and dark blue)
ith the embryo of the sorghum kernels still being prominent. In

oncordance with the barley image dataset the baseline differences
etween the average SNV corrected spectra of each of the defined
roups decreases with increasing PC (decreasing explained vari-

nce); again indicating a decrease in the contribution of physical
ariance with increasing PC.

As in the barley image dataset the first PC accounted for curva-
ure observed by differences in scattering (Fig. 6). However, unlike
89 (2012) 223– 230 229

the  barley dataset this was not largely a function of topography.
The greater size variability observed in sorghum grains meant PC1
contained both a topographical and size contribution. PC3 and PC4
contained both physical and chemical variation that could not eas-
ily be separated. Variation explained by PC3 seemed to be due to
proximate chemical composition, whereas the variation explained
by PC4 could already have been due to the onset of germination
with the release of enzymes.

3.3.  Wheat

A  distinct difference between viable and non-viable wheat ker-
nels was not observed until PC6 [8]. The PC1–PC6 score images
of viable and non-viable wheat kernels are shown in Fig. 7. Score
values grouped around zero of PC1 (light blue and green) were
associated with the flat dorsal side of the kernel. The edges of the
wheat kernels had negative PC1 score values (red and dark blue
in Fig. 7) and positive PC1 score values (yellow) were associated
with the lower apex or small end as well as the germ end of the
kernels. Principal component one loadings of the wheat dataset
were similar to both the barley and sorghum datasets, confirming
the explained variation being due to physical and thus scattering
differences (Fig. 8).

The  kernel edges (possible shading effect) had negative PC2
score values (red, dark blue and light blue in Fig. 7) and the higher
dorsal side positive PC2 score values (green, yellow and orange).
Overall the PC4 score image exhibited the same trend as PC2. The
opposite was  observed in PC3 with the higher dorsal side having
negative score values. PC2 and PC3 loading line plots for the wheat
image were similar to that of PC3 of the barley image dataset, while
the loading line plot of PC4 for wheat was  similar to that of PC2 of
the barley image dataset. Within the scores image of PC5 a weak
distinction between viable and non-viable kernels was observed,
however, PC5 was  largely characterised by negative scores (red)
on the lower edges of the kernels. The loadings of PC5 clearly indi-
cated this PC described chemical differences. In PC6 negative values
(red and dark blue) were associated with viable kernels and posi-
tive values (light blue and green) with non-viable kernels. Again a
reduction of baseline differences in the SNV corrected average spec-
tra between each set of PC groups was observed with increasing
PC.

Of the three grains the wheat score images were the most com-
plex. For example, the first PC did not explain variation due to kernel
shape as clearly as was  observed in the barley and sorghum image
datasets, respectively. This could be due to the dorsal side of wheat
grain being more flat compared to the other two  grains. It is sug-
gested that this could also have been a function of the difference in
seed coat (or hull) texture of wheat compared to that of barley and
sorghum. A highly textured surface will result in variable scattering
across the sampling area that cannot be explained within a single
PC but rather influences several PCs.

4. Conclusions

Kernel topography clearly influences NIR-HSI spectral data col-
lection and subsequent analysis and interpretation. Topography,
in terms of kernel shape and surface roughness, was a source
of variation isolated within PCs, despite spectral preprocessing
with standard normal variate transformation. Both the chemical
and the topographical complexity of the grains being investigated
influenced the ability of PCA to separate the various sources of
spectral variation. The complex topographies of grains required

spectral preprocessing and more than a single PC to be explained
efficiently. The first PC of each grain dataset was always due to
effects attributed to the kernel surface, thus scattering; although
less prominent for the wheat image. The subsequent PCs were
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ominated by either physical effects or chemical information
rom within the kernel. For example, PC2 of the barley image
ataset illustrated the difference between embryo and endosperm
xplaining the proximate composition of the kernel. This was  inde-
endent of grain type studied; in each dataset similar loadings were
bserved, though the order was different in the case of wheat. A full
nderstanding of a spectral image dataset using PCA is only pos-
ible when all PCs, before the PC of interest, are interpreted. The
ossible influence of penetration depth in association with scatter-

ng should also be considered in greater detail. Future studies will
equire larger populations to better define chemical and physical
ariation, and should explore other data analysis methods or pre-
rocessing techniques to make the viability effects more prominent

n higher variance PCs. In addition, adaptation of hardware should
e investigated to reduce the combined effect of illumination and
opography.

cknowledgements

Samples were kindly provided by the Agricultural Research
ouncil – Small Grain Institute, PANNAR and South African Brew-
ries Malting. This project was funded by the Winter Cereal Trust
South Africa) and the Sorghum Trust (South Africa). Paulina Engel-

recht wishes to thank Stellenbosch University and FoodBev SETA
or Masters bursaries. Cushla McGoverin acknowledges funding for
ostdoctoral research provided by the National Research Founda-
ion, South Africa (Grant number 71390). In addition, the South

[
[

89 (2012) 223– 230

African-Swedish Research Partnership Programme Bilateral Agree-
ment, NRF, (UID 60958) is acknowledged for funding to work at the
Swedish University of Agricultural Sciences (VR 348-2006-6715).
We are also grateful to Oskar Jonsson (Umbio AB, Umea, Sweden)
for the use of the SisuCHEMA imaging system, Evince software and
assistance with imaging.

References

[1] W.F. McClure, in: Y. Ozaki, W.F. McClure, A.A. Christy (Eds.), Near-infrared Spec-
troscopy in Food Science and Technology, John Wiley & Sons, Inc., Hoboken,
2007, pp. 1–10.

[2] E.N. Lewis, L.H. Kidder, in: S. Sasic, Y. Ozaki (Eds.), Raman, Infrared and Near-
infrared Chemical Imaging, John Wiley & Sons, Inc, Hoboken, 2010, pp. 75–92.

[3]  J. Burger, P. Geladi, J. Near Infrared Spectrosc. 15 (2007) 29–37.
[4] J. Burger, P. Geladi, J. Chemometr. 19 (2005) 355–363.
[5]  A.A. Gowen, C.P. O’Donnell, M.  Taghizadeh, P.J. Cullen, J.M. Frias, G. Downey, J.

Chemometr. 22 (2008) 259–267.
[6] E. Gaston, J.M. Frias, P.J. Cullen, C.P. O’Donnell, A.A. Gowen, J. Agric. Food Chem.

58 (2010) 6226–6233.
[7] M. Manley, G. du Toit, P. Geladi, Anal. Chim. Acta 686 (2010) 64–75.
[8] C.M. McGoverin, P. Engelbrecht, P. Geladi, M.  Manley, Anal. Bioanal. Chem. 401

(2011) 2283–2289.
[9] P. Engelbrecht, Near infrared hyperspectral imaging as detection method for

pre-germination in whole wheat, barley and sorghum grains. Masters Thesis,
Stellenbosch University, Stellenbosch, 2011.

10]  P. Williams, M.  Manley, G. Fox, P. Geladi, J. Near Infrared Spectrosc. 18 (2010)

49–58.

11] K. Esbensen, P. Geladi, Chemometr. Intell. Lab. 7 (1989) 67–86.
12] B.G. Osborne, T. Fearn, P.H. Hindle, Practical NIR Spectroscopy with Applica-

tions in Food and Beverage Analysis, Longman Scientific & Technical, Harlow,
1993.


	Influence of grain topography on near infrared hyperspectral images
	1 Introduction
	2 Materials and methods
	2.1 Samples and sample preparation
	2.2 Near infrared hyperspectral imaging
	2.2.1 Data collection
	2.2.2 Data analysis


	3 Results and discussion
	3.1 Barley
	3.2 Sorghum
	3.3 Wheat

	4 Conclusions
	Acknowledgements
	References


